57
tests/integration_test.rs
Normal file
57
tests/integration_test.rs
Normal file
@ -0,0 +1,57 @@
|
||||
// Copyright (C) 2025 Bellande Artificial Intelligence Computer Vision Research Innovation Center, Ronaldson Bellande
|
||||
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
use std::error::Error;
|
||||
|
||||
use bellande_artificial_intelligence_training_framework::{
|
||||
core::tensor::Tensor,
|
||||
layer::{activation::ReLU, conv::Conv2d, linear::Linear, pooling::MaxPool2d},
|
||||
models::sequential::Sequential,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_single_layer() -> Result<(), Box<dyn Error>> {
|
||||
// Create the simplest possible model
|
||||
let mut model = Sequential::new();
|
||||
|
||||
// Add just one conv layer
|
||||
model.add(Box::new(Conv2d::new(
|
||||
3, // in_channels
|
||||
4, // out_channels (reduced)
|
||||
(3, 3), // kernel_size
|
||||
Some((1, 1)), // stride
|
||||
Some((1, 1)), // padding
|
||||
true, // bias
|
||||
)));
|
||||
|
||||
// Create tiny input
|
||||
let input = Tensor::zeros(&[1, 3, 8, 8]); // Minimal size
|
||||
|
||||
// Test forward pass
|
||||
let output = model.forward(&input)?;
|
||||
|
||||
// Verify output
|
||||
assert_eq!(output.shape()[1], 4); // Check output channels
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// Test tensor operations separately
|
||||
#[test]
|
||||
fn test_tensor_ops() -> Result<(), Box<dyn Error>> {
|
||||
let tensor = Tensor::zeros(&[1, 3, 8, 8]);
|
||||
assert_eq!(tensor.shape(), &[1, 3, 8, 8]);
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user