// Copyright (C) 2025 Bellande Artificial Intelligence Computer Vision Research Innovation Center, Ronaldson Bellande
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
use std::error::Error;
use bellande_artificial_intelligence_training_framework::{
core::tensor::Tensor,
layer::{activation::ReLU, conv::Conv2d, linear::Linear, pooling::MaxPool2d},
models::sequential::Sequential,
};
#[test]
fn test_single_layer() -> Result<(), Box> {
// Create the simplest possible model
let mut model = Sequential::new();
// Add just one conv layer
model.add(Box::new(Conv2d::new(
3, // in_channels
4, // out_channels (reduced)
(3, 3), // kernel_size
Some((1, 1)), // stride
Some((1, 1)), // padding
true, // bias
)));
// Create tiny input
let input = Tensor::zeros(&[1, 3, 8, 8]); // Minimal size
// Test forward pass
let output = model.forward(&input)?;
// Verify output
assert_eq!(output.shape()[1], 4); // Check output channels
Ok(())
}
// Test tensor operations separately
#[test]
fn test_tensor_ops() -> Result<(), Box> {
let tensor = Tensor::zeros(&[1, 3, 8, 8]);
assert_eq!(tensor.shape(), &[1, 3, 8, 8]);
Ok(())
}