# 📦 Bellande Step (Infinite Dimensions) # API Usability ``` { "url": "https://bellanderoboticssensorsresearchinnovationcenter-kot42qxp.b4a.run", "endpoint_path": { "bellande_step": "/api/Bellande_Step/bellande_step_nd" }, "Bellande_Framework_Access_Key": "bellande_web_api_opensource" } ``` # API Payload Example ``` { "node0": [0, 0, 0], "node1": [100, 100, 100], "limit": 75, "dimensions": 3, "auth": { "authorization_key": "bellande_web_api_opensource" } } ``` # Quick API Testing ``` curl -X 'POST' \ 'https://bellanderoboticssensorsresearchinnovationcenterwebsite-kot42qxp.b4a.run/api/Bellande_Step/bellande_step_nd' \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "node0": [0, 0, 0], "node1": [100, 100, 100], "limit": 75, "dimensions": 3, "auth": { "authorization_key": "bellande_web_api_opensource" } }' ``` # BS(Bellande Step) Algorithm API ## Experiment 1 -- Limit = 1 | ![2D](graphs_charts/graph_charts_1/2D_Space.png) *Figure 2D* | ![3D](graphs_charts/graph_charts_1/3D_Space.png) *Figure 3D* | ![4D](graphs_charts/graph_charts_1/4D_Space.png) *Figure 4D* | |:------------------------------------------------------------:|:------------------------------------------------------------:|:------------------------------------------------------------:| | ![5D](graphs_charts/graph_charts_1/5D_Space.png) *Figure 5D* | ![6D](graphs_charts/graph_charts_1/6D_Space.png) *Figure 6D* | ![7D](graphs_charts/graph_charts_1/7D_Space.png) *Figure 7D* | | ![8D](graphs_charts/graph_charts_1/8D_Space.png) *Figure 8D* | ![9D](graphs_charts/graph_charts_1/9D_Space.png) *Figure 9D* | ![10D](graphs_charts/graph_charts_1/10D_Space.png) *Figure 10D* | ## Experiment 2 -- Limit = 25 | ![2D](graphs_charts/graph_charts_25/2D_Space.png) *Figure 2D* | ![3D](graphs_charts/graph_charts_25/3D_Space.png) *Figure 3D* | ![4D](graphs_charts/graph_charts_25/4D_Space.png) *Figure 4D* | |:-------------------------------------------------------------:|:-------------------------------------------------------------:|:-------------------------------------------------------------:| | ![5D](graphs_charts/graph_charts_25/5D_Space.png) *Figure 5D* | ![6D](graphs_charts/graph_charts_25/6D_Space.png) *Figure 6D* | ![7D](graphs_charts/graph_charts_25/7D_Space.png) *Figure 7D* | | ![8D](graphs_charts/graph_charts_25/8D_Space.png) *Figure 8D* | ![9D](graphs_charts/graph_charts_25/9D_Space.png) *Figure 9D* | ![10D](graphs_charts/graph_charts_25/10D_Space.png) *Figure 10D* | ## Experiment 3 -- Limit = 50 | ![2D](graphs_charts/graph_charts_50/2D_Space.png) *Figure 2D* | ![3D](graphs_charts/graph_charts_50/3D_Space.png) *Figure 3D* | ![4D](graphs_charts/graph_charts_50/4D_Space.png) *Figure 4D* | |:-------------------------------------------------------------:|:-------------------------------------------------------------:|:-------------------------------------------------------------:| | ![5D](graphs_charts/graph_charts_50/5D_Space.png) *Figure 5D* | ![6D](graphs_charts/graph_charts_50/6D_Space.png) *Figure 6D* | ![7D](graphs_charts/graph_charts_50/7D_Space.png) *Figure 7D* | | ![8D](graphs_charts/graph_charts_50/8D_Space.png) *Figure 8D* | ![9D](graphs_charts/graph_charts_50/9D_Space.png) *Figure 9D* | ![10D](graphs_charts/graph_charts_50/10D_Space.png) *Figure 10D* | ## Experiment 4 -- Limit = 75 | ![2D](graphs_charts/graph_charts_75/2D_Space.png) *Figure 2D* | ![3D](graphs_charts/graph_charts_75/3D_Space.png) *Figure 3D* | ![4D](graphs_charts/graph_charts_75/4D_Space.png) *Figure 4D* | |:-------------------------------------------------------------:|:-------------------------------------------------------------:|:-------------------------------------------------------------:| | ![5D](graphs_charts/graph_charts_75/5D_Space.png) *Figure 5D* | ![6D](graphs_charts/graph_charts_75/6D_Space.png) *Figure 6D* | ![7D](graphs_charts/graph_charts_75/7D_Space.png) *Figure 7D* | | ![8D](graphs_charts/graph_charts_75/8D_Space.png) *Figure 8D* | ![9D](graphs_charts/graph_charts_75/9D_Space.png) *Figure 9D* | ![10D](graphs_charts/graph_charts_75/10D_Space.png) *Figure 10D* | ## Experiment 5 -- Limit = 100 | ![2D](graphs_charts/graph_charts_100/2D_Space.png) *Figure 2D* | ![3D](graphs_charts/graph_charts_100/3D_Space.png) *Figure 3D* | ![4D](graphs_charts/graph_charts_100/4D_Space.png) *Figure 4D* | |:--------------------------------------------------------------:|:--------------------------------------------------------------:|:--------------------------------------------------------------:| | ![5D](graphs_charts/graph_charts_100/5D_Space.png) *Figure 5D* | ![6D](graphs_charts/graph_charts_100/6D_Space.png) *Figure 6D* | ![7D](graphs_charts/graph_charts_100/7D_Space.png) *Figure 7D* | | ![8D](graphs_charts/graph_charts_100/8D_Space.png) *Figure 8D* | ![9D](graphs_charts/graph_charts_100/9D_Space.png) *Figure 9D* | ![10D](graphs_charts/graph_charts_100/10D_Space.png) *Figure 10D* | # Check Out Research Organization for open-source/semi-open-source API - https://robotics-sensors.github.io - Check out website for more information avaliable open-source API # API in api_docs - Temporarily Enabled for OpenSource - 2D Space - 3D Space - 4D Space - 5D Space - 6D Space - 7D Space - 8D Space - 9D Space - 10D Space # Can also checkout portion of the docs at [Portion API DOCS](https://github.com/Robotics-Sensors/bellande_robots_step/blob/main/api_docs.md) ### ✔️ confirmed versions - `The step function efficiently computes the next step towards a target node within a specified distance limit.` ## Usage 2D Space Suppose you have two nodes representing positions in a 2D space: - `node0` at coordinates `(0, 0)` - `node1` at coordinates `(5, 5)` You want to compute the next step from `node0` towards `node1` while limiting the maximum distance to 3 units. ```python # Define Import from bellande_robot_step.bellande_robot_step_2d import bellande_step_2d, Node2D # Define the nodes node0 = Node2D(0, 0) node1 = Node2D(5, 5) # Compute the next step within a distance limit of 3 units next_step = bellande_step_2d(node0, node1, limit=3) # Output the coordinates of the next step print("Next Step Coordinates:", next_step.coord) ``` ## Usage 3D Space Suppose you have two nodes representing positions in a 3D space: - `node0` at coordinates `(0, 0, 0)` - `node1` at coordinates `(5, 5, 5)` You want to compute the next step from `node0` towards `node1` while limiting the maximum distance to 3 units. ```python # Define Import from bellande_robot_step.bellande_robot_step_3d import bellande_step_3d, Node3D # Define the nodes node0 = Node3D(0, 0, 0) node1 = Node3D(5, 5, 5) # Compute the next step within a distance limit of 3 units next_step = bellande_step_3d(node0, node1, limit=3) # Output the coordinates of the next step print("Next Step Coordinates:", next_step.coord) ``` ### Avaliable - 2D Space - 3D Space - 4D Space - 5D Space - 6D Space - 7D Space - 8D Space - 9D Space - 10D Space ## Website - https://pypi.org/project/bellande_robot_step ### Installation - `$ pip install bellande_robot_step` ### Upgrade (if not upgraded) - `$ pip install --upgrade bellande_robot_step` ``` Name: bellande_robot_step Version: 0.3.0 Summary: Computes the next step towards a target node Home-page: github.com/RonaldsonBellande/bellande_robot_step Author: Ronaldson Bellande Author-email: ronaldsonbellande@gmail.com License: GNU General Public License v3.0 Requires: numpy Required-by: ``` ## Published Paper ``` Coming Soon ``` ## License This Algorithm or Models is distributed under the [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/), see [LICENSE](https://github.com/RonaldsonBellande/bellande_robots_step/blob/main/LICENSE) and [NOTICE](https://github.com/RonaldsonBellande/bellande_robots_step/blob/main/LICENSE) for more information.