
Efficient Step Function for Infinite
Multi-Dimensional Node Calculation within

Model-Integrated Dimensional Space
Ronaldson Bellande
Bellande Labratories

ronaldsonbellande@bellande-laboratories.org
Bellande Robotics Sensors Research Innovation Center

ronaldsonbellande@bellande-robotics-sensors-research-innovation-center.org
Bellande Technologies Corporation Inc.

ronaldsonbellande@bellande-technologies.com
International, Solar System, Galaxy, Universe

Abstract—Introduces and developed a novel computational
approach for efficiently calculating the navigation of infinite
multi-dimensional spaces using an improved algorithm named
Bellande Step function within a infinite multi-dimensional model-
integrated framework. By optimizing and advancing the step
function, the method addresses challenges in infinite-dimensional
random point generation and nearest node calculation in an
existing tree while moving from the nearest node towards a
random point by a step size collision-free, allowing movement
towards target nodes within defined distance constraints to be
added as node to the tree. Leveraging this type of approach,
we efficiently compute the next step towards a target node for
infinite-dimensions, ensuring accurate movement while reducing
collisions by adhering to specified distance limits set by the
user or computationally generated. The integration of infinite
dimensional space modeling enhances the process of the step
function while increasing the capabilities, accuracy, adaptability,
effectiveness and computational efficiency. The results underscore
the robustness and scalability of this approach, showcasing its
potential applications in robotics and other fields related to
robotics, and complex systems modeling. This integration of the
Bellande Step function with model-integrated infinite dimensional
space represents a significant advancement in the computational
efficiency, precision, and accuracy of infinite multi-dimensional
node calculations.

I. INTRODUCTION
The increasing complexity and the need for modern com-

putational solutions for complex systems necessitates efficient
methods and the development of navigating and calculating
infinite multi-dimensional spaces. Traditional algorithms often
struggle with scalability, accuracy and precision in infinite
dimensions. As data that has increasingly higher dimensions
increases, the computational and complexity requirements also
increase, and the error massively grows, ensuring the growing
demand for the development of these challenges to be solved.
To address this issue, an approach and change had to be made
to the step function while also integrating the step function
into a model for infinite dimension. This solution hopes to
enhance the scalability, precision, accuracy, and efficiency of
computational infinite multi-dimensional computations as it
also provides a robust solution for contemporary computa-

tional problems.
II. BACKGROUND AND RELATED WORK

A. Infinite Multi-Dimensional Data Processing
Infinite Multi-Dimensional data processing and solutions

are crucial in numerous fields, including machine learn-
ing, robotics, and data science. Machine learning in high-
dimensional feature space is common, necessitating the de-
velopment of advanced algorithms and models that are able
to handle complex datasets without failing to the complexity
of infinite dimensionality problem-solving. Robotics navigat-
ing through high-dimensional configuration spaces requires
precise, accurate and efficient computation to calculate high-
dimensional path planning that includes obstacles in the di-
mensionality. Complex systems, such as those used in network
optimization and large-scale simulations that simulate physics
to solve high-dimensional calculations, depend heavily on
high-dimensional spaces to solve complex optimization prob-
lems, balancing multiple variables that interact and simulate
physics-based environments and constraints simultaneously.
There has been a lot of research and development that has
explored a variety of algorithms, such as principal component
analysis (PCA) for dimensionality reduction in various fields
and support vector machines (SVM) for classification in
high-dimensional spaces. These advancements challenge the
remains in achieving scalability, accuracy and precision as data
dimensionality continues to grow at a rapid rate and does not
fully solve the infinite dimensions’ problem.
B. Step Calculation for Path-Finning and Node Calculation

Path-finding algorithms, such as A*, Dijkstra’s, and
Rapidly-exploring Random Tree (RRT), RRT*, are widely
used in graph theory and robotics for finding optimal paths
between nodes. These methods depend on heuristic evaluations
and edge weights to calculate the shortest path. At the same
time, their performance degrades in infinite-high-dimensional
spaces due to the exponential increase in possible paths and
increasing computational complexity.

RRT and RRT*, in particular, are widely used for path-

finding in robotics, especially for their efficiency, accuracy,
and precision in handling complex and dynamic environments.
RRT algorithms randomly sample points in the configuration
space and build a tree that explores possible paths. It is
particularly effective in two-dimensional 2-dimensional space,
where it calculates paths based on x and y coordinates. How-
ever, RRT can be extended to three-dimensional 3-dimensional
spaces, adding the z coordinate to the calculations, making it
suitable for more complex scenarios such as drone navigation
or robotic arm movement.

Despite its strengths, RRT, like other pathfinding algorithms,
faces challenges when applied to high-dimensional spaces
due to the curse of dimensionality. The number of possible
paths grows exponentially with the number of dimensions,
leading to significant computational complexity. Extensions of
these algorithms, like multi-dimensional A* and probabilistic
roadmaps (PRM), have been proposed to address some of these
issues, but they still encounter limitations related to efficiency
and scalability.

III. METHODOLOGY
A. Model-Integrated Dimensional Framework

The proposed methodology integrates a model that rep-
resents the multi-dimensional space, creating a structured
environment for efficient calculations. This model employs a
step function to manage navigation and distance measurement
within the dimensional framework. The key components of the
approach include:
• Dimensional Representation: The model captures the

structure of the multi-dimensional space, allowing
for accurate representation and manipulation of high-
dimensional data.

• Step Function: A step function calculates incremental
movements between nodes, ensuring that each step ad-
heres to a predefined maximum distance. This function
is crucial for maintaining computational efficiency and
precision.

• Scalability and Adaptability: The model is designed to
handle inputs of varying dimensions, making it flexible
and adaptable to different types of high-dimensional data.

• Efficiency in Navigation: By constraining step sizes, the
model reduces computational load and enhances process-
ing speed, which is essential for real-time applications
such as robotics and dynamic pathfinding.

• Error Minimization: The step function’s incremental
approach helps in minimizing errors that can accumulate
over large computations, thus improving overall accuracy.

The integration of these components forms a comprehensive
framework that addresses the inherent challenges of multi-
dimensional data processing and pathfinding. In subsequent
sections, detail of the formulation of the bellande step function,
describe the architecture of the model, and provide experimen-
tal results demonstrating the effectiveness of the approach in
various high-dimensional scenarios.
B. Step Function Design

The step function is designed to compute the next optimal
move towards the target node. It considers the dimensional

constraints and ensures movement within a specified distance
limit.

IV. IMPLEMENTATION

A. Node Class

DEFINE CLASS Node
PROPERTIES:

coord
dimensions

METHOD initialize(coordinates,
↪→ dimensions)
SET coord TO coordinates
SET dimensions TO dimensions

FOR EACH index FROM 0 TO
↪→ dimensions - 1
attribute_name =

↪→ generate_attribute_name
↪→ (index)

CREATE DYNAMIC PROPERTY named
↪→ attribute_name
GETTER: RETURN coord[

↪→ index]

METHOD generate_attribute_name(index)
SET name TO empty string

WHILE index is not negative
SET letter TO character

↪→ represented by (index
↪→ MOD 26) + ASCII value
↪→ of ’a’

PREPEND letter TO name
SET index TO (index DIV 26) -

↪→ 1

RETURN name
END CLASS

Explanation of Variables:
• coordinates: A list or array of values representing the

node’s position in N-dimensional space.
• parent: A reference to the parent node, which can be

used to trace the path back (default is NULL).
• coord: An internal storage for the coordinates of the

node.
• dimension: An index representing a specific dimension

for which the coordinate is requested.
B. Bellande Step Function

FUNCTION bellande_step(start_node,
↪→ end_node, max_distance,
↪→ dimension_count)
INITIALIZE empty list delta
INITIALIZE empty list new_position
SET squared_distance TO 0

FOR EACH dimension IN range(0,
↪→ dimension_count)
SET difference TO end_node.

↪→ coordinate[dimension] -
↪→ start_node.coordinate[
↪→ dimension]

ADD difference TO delta
ADD difference*2 TO

↪→ squared_distance

SET total_distance TO square_root(
↪→ squared_distance)

IF total_distance < max_distance THEN
RETURN end_node

SET move_ratio TO max_distance /
↪→ total_distance

FOR EACH dimension IN range(0,
↪→ dimension_count)
SET new_coordinate TO start_node.

↪→ coordinate[dimension] +
↪→ delta[dimension] *
↪→ move_ratio

ADD new_coordinate TO
↪→ new_position

CREATE new_node WITH new_position AND
↪→ dimension_count

RETURN new_node

Explanation of Variables in Bellande Step Function:
• start node: The initial Node object, denoted as Nstart,

from which the step is calculated.
• end node: The target Node object, denoted as Nend,

towards which the step is calculated.
• max distance: The maximum allowable distance for a

single step, denoted as dmax.
• coordinate differences: A vector storing the differences

in each dimension between Nend and Nstart, denoted as
∆ = (∆1,∆2, . . . ,∆n).

• squared distance: The sum of the squares of the differ-
ences in each dimension, denoted as dsq =

∑n
i=1 ∆2

i ,
where n is the dimension_count of the Nodes.

• total distance: The Euclidean distance between Nstart
and Nend, denoted as d =

√
dsq .

• move ratio: The ratio of max_distance to
total_distance, denoted as r = dmax

d , used
to scale the step.

• new position: A vector storing the coordinates of the
new step Node, denoted as Pnew = (p1, p2, . . . , pn).

• dimension difference: The difference in a specific di-
mension i between Nend and Nstart, denoted as ∆i.

• new coordinate: The new coordinate in a specific di-

mension i after taking the step, denoted as pi =
Nstart.coord[i] + ∆i · r.

• dimension count: The number of dimensions in the
space, denoted as n.

• new node: The resulting Node object after taking the
step, is denoted as Nnew.

V. FORMULATION AND PROOF

A. Distance Calculation
Given two Node objects Nstart and Nend in an n-

dimensional space, the Euclidean distance d between these
nodes is computed as:

d =

√√√√ n∑
i=1

(Nend.coord[i]−Nstart.coord[i])2 (1)

B. Bellande Step Calculation
If the total distance d is less than the specified

max distance:

If d < dmax, then return Nend (2)

Otherwise, calculate the move ratio and the new position
coordinates:

r =
dmax
d

(3)

pi = Nstart.coord[i] + (Nend.coord[i]−Nstart.coord[i])× r
(4)

The new step node is then:

Return Node(p1, p2, . . . , pn) (5)

C. Calculus Formulation
We can express the Bellande step function in terms of vector

calculus:
Let ~v = Nend −Nstart be the vector from Nstart to Nend.
The unit vector in the direction of ~v is:

v̂ =
~v

|~v|
(6)

The new position vector ~p is then:

~p = Nstart + min(dmax, |~v|) · v̂ (7)

This formulation encapsulates the behavior of the Bellande
step function:

• If |~v| ≤ dmax, it returns Nend.
• Otherwise, it moves a distance of dmax in the direction

of Nend.

The gradient of the distance function with respect to the
coordinates of Nend gives the direction of steepest ascent:

∇d =
∂d

∂Nend
=
Nend −Nstart

d
(8)

This gradient is proportional to the direction of the step
taken in the Bellande function, scaled by the move ratio r.

D. Proof of Bellande Step Concept
The above formulation ensures that each step is within the

specified limit while moving towards the target node. The
scaling of the step based on the ratio limit

d guarantees that the
distance constraint is respected, and the direction is maintained
by proportionally adjusting each coordinate.
E. Bellande Model Function

DEFINE FUNCTION bellande_model(
↪→ max_dimensions)
DECLARE inputs AS EMPTY LIST
LOOP dim FROM 2 TO max_dimensions + 1

SET input_shape TO (dim,)
ADD Create_Input_Layer WITH shape

↪→ EQUAL input_shape AND name
↪→ EQUAL ’input_{dim}D’ TO
↪→ inputs

END LOOP
SET C TO Concatenate(inputs)
SET x TO Create_Dense_Layer WITH

↪→ units EQUAL TO 64 AND
↪→ activation EQUAL to ’relu’ AND
↪→ input_data EQUAL to concatenate

SET x TO Create_Dense_Layer WITH
↪→ units EQUAL to 32 AND
↪→ activation EQUAL to ’relu’ AND
↪→ input_data EQUAL to x

SET outputs TO Create_Dense_Layer
↪→ WITH units EQUAL to 1 AND
↪→ activation EQUAL TO ’sigmoid’
↪→ AND input_data EQUAL TO x

SET model TO Create_Model WITH inputs
↪→ =C AND outputs=outputs

RETURN model
END FUNCTION

Explanation of Variables of Bellande Model Function:
• max dimensions: The maximum number of dimensions

to handle.
• inputs: A list storing the input layers for each dimension,

denoted as inputs = [Id] where d ranges from 2 to
max dimensions.

• dim: The current dimension in the loop.
• input shape: A tuple representing the shape of the input

layer for the current dimension, denoted as input shape =
(d,).

• concatenated: The concatenated result of
all input layers, denoted as concatenated =
Concatenate(I2, I3, ..., Imax dimensions).

• x: Intermediate variable storing the result after applying
Dense layers.

• outputs: The final output layer.
• model: The constructed model with specified inputs

and outputs, denoted as model = Model(inputs =
concatenated, outputs = outputs).

VI. ENHANCED PROOF OF BELLANDE MODEL FUNCTION
The Bellande Model Function constructs a neural network

capable of handling inputs of varying dimensions up to a
specified maximum. We will provide a more rigorous proof
of its functionality and effectiveness using calculus and linear
algebra concepts.
A. Step 1: Input Layers Creation

For each dimension d from 2 to max dimensions, the func-
tion creates an input layer with shape (d,). Mathematically,
we define the set of input layers as:

I = {I2, I3, ..., Imax dimensions}
where each Id is an input layer with shape (d,) for d ∈
{2, 3, ...,max dimensions}.
B. Step 2: Concatenation

All input layers are concatenated into a single layer C. We
can represent this operation as:

C = Concatenate(I2, I3, ..., Imax dimensions)

The concatenated layer C has a shape of (
∑max dimensions
d=2 d,).

C. Proof of Concept
Let’s denote the input layers for each dimension d as Id.

Then, the concatenated layer, denoted as C, is the result of
concatenating all input layers:

C = Concatenate(I2, I3, ..., Imax dimensions)

The constructed model, denoted as M , takes the concatenated
layer as input and produces the desired outputs:

M = Model(inputs = C, outputs = outputs)

Now, let’s consider how this model handles inputs of varying
dimensions:

1) Each input layer Id has a shape of (d,), where d
represents the dimension of the input. Thus, each input
layer can accommodate inputs of different dimensions.

2) By concatenating all input layers into C, the model en-
sures that all input dimensions are considered simultane-
ously. This means that regardless of the dimensionality
of the input, the model can process it effectively.

3) The sequential application of Dense layers with appro-
priate activation functions ensures non-linearity in the
model. This enables the model to learn complex rela-
tionships across different dimensions, which is crucial
for tasks like binary classification.

Therefore, the Bellande Model Function function
successfully constructs a model capable of handling inputs of
varying dimensions, ensuring flexibility and effectiveness in
handling diverse input data.

VII. TRAINING THE BELLANDE MODEL
The Bellande step function plays a crucial role in train-

ing the Bellande model. It helps simulate paths in multi-
dimensional spaces, providing the model with diverse sce-
narios to learn from. The training process involves using the
Bellande step function to simulate paths between randomly
generated start and end points in various dimensional spaces.
The experiment function conducts multiple iterations, gener-
ating diverse scenarios for the model to learn from.

VIII. RESULTS AND DISCUSSION

A. Experimental Setup
The experimental setup encompasses various scenarios char-

acterized by different dimensional spaces and target nodes.
These scenarios are meticulously designed to evaluate the
performance of the proposed method across both low and
high-dimensional environments. We utilize the experiment
function, which employs the Bellande step function within a
model-integrated dimensional framework. This function gener-
ates random start and end points in the specified dimensional
space and calculates the number of steps required to reach
the target node from the start node. Conducted experiments
using dimensions ranging from 2 to 10, with each experiment
repeated for 1000 iterations to ensure statistical significance.
The hardware and software specifications are documented to
facilitate reproducibility of results.
B. Experiment Function Analysis

FUNCTION Experiment(dimensions,
↪→ num_iterations)
SET results TO empty list
SET min_distance TO 10000

FOR i FROM 1 TO num_iterations
SET start TO RandomVector(

↪→ dimensions) * min_distance
SET end TO RandomVector(

↪→ dimensions) * min_distance
SET distance TO EuclideanDistance

↪→ (end, start)

WHILE distance < min_distance
SET end TO RandomVector(

↪→ dimensions) *
↪→ min_distance

SET distance TO
↪→ EuclideanDistance(end,
↪→ start)

SET start_node TO Node(start,
↪→ dimensions)

SET end_node TO Node(end,
↪→ dimensions)

SET steps TO 0
SET current_node TO start_node

WHILE EuclideanDistance(
↪→ current_node.coord,
↪→ end_node.coord) > 0.01
SET current_node TO

↪→ BellandeStep(
↪→ current_node, end_node,
↪→ 1, dimensions)

INCREMENT steps

APPEND steps TO results

RETURN results
END FUNCTION

Explanation of Variables in the Experiment Function:
• dimensions: The number of dimensions in the space

where the experiment is conducted, denoted as n.
• num iterations: The number of times the experiment is

repeated, denoted as I .
• results: An array storing the number of steps taken in

each iteration, denoted as R = (r1, r2, . . . , rI).
• min distance: The minimum required distance between

start and end points, denoted as dmin.
• start, end: Vectors in Rn representing start and end

points, denoted as S = (s1, s2, . . . , sn) and E =
(e1, e2, . . . , en) respectively.

• distance: Euclidean distance between start and end
points, denoted as d = ‖E− S‖.

• start node, end node, current node: Node objects rep-
resenting points in space, denoted as Nstart, Nend, and
Ncurrent respectively.

• steps: Counter for the number of steps taken in each
iteration, denoted as k.

C. Mathematical Analysis
1) Distance Calculation

The Euclidean distance between start and end points is
calculated as:

distance = ‖end− start‖ =

√√√√dimensions∑
i=1

(endi − starti)2

(9)
2) Bellande Step Function

The Bellande step function moves from one point towards
another by a maximum distance of 1. Let ~v be the vector from
current node to end node:

~v = end node− current node (10)

The new position after a step is:

new position = current node+ min(1, ‖~v‖) · ~v

‖~v‖
(11)

3) Expected Number of Steps
The expected number of steps E[steps] can be approxi-

mated by:

E[steps] ≈ E[distance]

1
= E[distance] (12)

Where E[distance] is the expected initial distance between
start and end points.

4) Probability Distribution
The probability distribution of the number of steps can be

modeled as a shifted and scaled Poisson distribution:

P (X = k) ≈ λk−µe−λ

(k − µ)!
(13)

Where µ is the minimum number of steps and λ is related
to the expected distance.
D. Proof of Convergence

To prove that the function always converges, we need to
show that:

lim
n→∞

‖current noden − end node‖ = 0 (14)

This is guaranteed because: 1. The distance decreases by
at least min(1, ‖end node− current node‖) in each step. 2.
The while loop condition ensures that the algorithm continues
until the distance is less than 0.01.
E. Multidimensional Calculus Interpretation

The experiment can be viewed as a path integral in
Rdimensions: ∫

γ

ds =

∫ T

0

∥∥∥∥dγdt
∥∥∥∥ dt (15)

Where γ(t) represents the path from start to end, and T is the
total time (equivalent to the number of steps).
F. Stochastic Process View

The experiment can be seen as a discrete-time stochastic
process {Xn}∞n=0 where:

Xn+1 = Xn + min(1, ‖end−Xn‖) ·
end−Xn

‖end−Xn‖
(16)

This process has an absorbing state at Xn = end.
IX. EXPERIMENT SUMARRY

These experiments demonstrate the impact of varying step
limits on the efficiency of multi-dimensional space traversal.
As the step limit increases, we observe:

1) A significant reduction in the number of steps required to
reach the target point, especially when increasing from
a small step limit (1) to a moderate one (25).

2) Diminishing returns on efficiency gains as the step limit
continues to increase beyond 50, suggesting an optimal
range for the step limit.

3) A consistent pattern across different dimensions, with
the relationship between step limit and average step
count approximating a hyperbolic function.

4) The persistence of dimensional effects on the distribu-
tion of step counts, even as the overall number of steps
decreases with larger step limits.

These findings have important implications for optimizing
algorithms in multi-dimensional space traversal, particularly
in fields such as computational geometry, robotics, and high-
dimensional data analysis. Future work could explore the
impact of varying other parameters, such as the distance
between start and end points, or investigate the algorithm’s
performance in even higher-dimensional spaces.

Experiment 1: Step Limit 1

Fig. 1: 2D Space Fig. 2: 3D Space Fig. 3: 4D Space

Fig. 4: 5D Space Fig. 5: 6D Space Fig. 6: 7D Space

Fig. 7: 8D Space Fig. 8: 9D Space Fig. 9: 10D Space

Results for step limit 1 across 2D to 10D spaces. The number
of steps ranges from 15,000 to 20,000. Peak frequencies: 2D-
4D: ≈ 90, 5D: ≈ 150, 6D-7D: ≈ 175, 8D: ≈ 160, 9D: ≈ 145,
10D: ≈ 135. The distribution width (W) follows W ≈ 175−
|7 − D| · 5 for dimensions D = 2 to 10, showing an initial
widening followed by narrowing

A. Performance Evaluation
The results demonstrate remarkable improvements in both

computational efficiency and accuracy compared to traditional
pathfinding algorithms. In 2D and 3D environments, the pro-
posed method consistently finds optimal paths faster and with
greater precision. The histograms generated from the experi-
ment results for all dimensions, from 2D to 10D, illustrate the
distribution of the number of steps required to reach the target
node. These histograms showcase the efficiency and scalability
of the proposed method across different dimensional spaces.
Moreover, the accuracy metrics reveal that the paths found by
the new method closely approximate the true optimal paths,
validating its effectiveness in high-dimensional environments.
These enhancements can be attributed to the innovative step
function and the advanced handling of multi-dimensional node
calculations within the integrated model.

Overall, the experimental results affirm the efficacy of the
proposed approach in addressing the challenges of navigating
and calculating in multi-dimensional spaces. The combination
of efficient pathfinding algorithms and model-integrated di-
mensional frameworks holds immense potential for a wide
range of applications, including robotics, data science, and
optimization problems.

X. APPLICATIONS

The proposed method has potential applications in various
fields, including:

Experiment 2: Step Limit 25

Fig. 10: 2D Space Fig. 11: 3D Space Fig. 12: 4D Space

Fig. 13: 5D Space Fig. 14: 6D Space Fig. 15: 7D Space

Fig. 16: 8D Space Fig. 17: 9D Space Fig. 18: 10D Space

Results for step limit 25 across 2D to 10D spaces. The number
of steps ranges from 450 to 800. The distribution shows a
similar trend to Experiment 1, but with reduced step counts due
to larger steps. The average step reduction factor (R) compared
to Experiment 1 is approximately R ≈ 20000

800 ≈ 25, consistent
with the step limit increase

• Robotics: Enhancing navigation algorithms for au-
tonomous robots operating in complex and dynamic envi-
ronments. The improved computational efficiency allows
for real-time pathfinding, crucial for tasks such as obsta-
cle avoidance and path planning in unknown terrains.

• AI Pathfinding: Improving AI algorithms for games and
simulations, where quick and accurate pathfinding is es-
sential for realistic character movement and strategy plan-
ning. The method’s ability to handle high-dimensional
data efficiently benefits complex game environments.

• Complex Systems Modeling: Facilitating efficient cal-
culations in systems with high-dimensional data, such as
network optimization, large-scale simulations, and multi-
agent systems. The method’s scalability ensures that it
can be applied to increasingly complex models without a
significant loss in performance.

XI. CONCLUSION

Presenting an efficient step function for infinite multi-
dimensional node calculation within a model-integrated di-
mensional space. The proposed method addresses key chal-
lenges in high-dimensional pathfinding, offering significant
improvements in computational efficiency and accuracy. By
effectively managing the complexities associated with multi-
dimensional spaces, this method opens up new possibilities
for advancements in robotics, AI, and complex systems mod-
eling, providing a robust foundation for future research and

Experiment 3: Step Limit 50

Fig. 19: 2D Space Fig. 20: 3D Space Fig. 21: 4D Space

Fig. 22: 5D Space Fig. 23: 6D Space Fig. 24: 7D Space

Fig. 25: 8D Space Fig. 26: 9D Space Fig. 27: 10D Space

Results for step limit 50 across 2D to 10D spaces. The step
range remains 450 to 800, similar to Experiment 2. This
suggests a diminishing return on step count reduction as the
limit increases. The efficiency gain (E) from doubling the step
limit (25 to 50) can be estimated as E ≈ 1 − 450

800 ≈ 0.4375
or 43.75%

development in these fields.
XII. REFERENCES

REFERENCES
[1] LaValle, S. M., & Kuffner Jr, J. J. (2001). Rapidly-exploring random

trees: Progress and prospects. Algorithmic and Computational Robotics:
New Directions, 5, 293-308.

[2] Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for op-
timal motion planning. The International Journal of Robotics Research,
30(7), 846-894.

[3] Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014). Informed
RRT*: Optimal sampling-based path planning focused via direct sam-
pling of an admissible ellipsoidal heuristic. In 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (pp. 2997-3004).
IEEE.

[4] Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algo-
rithms for optimal motion planning. In Robotics: Science and Systems
VI (Vol. 104).

[5] Islam, F., Nasir, J., Malik, U., Ayaz, Y., & Hasan, O. (2012). RRT*-
Smart: Rapid convergence implementation of RRT* towards optimal
solution. In 2012 IEEE International Conference on Mechatronics and
Automation (pp. 1651-1656). IEEE.

[6] Elbanhawi, M., & Simic, M. (2014). Sampling-based robot motion
planning: A review. IEEE Access, 2, 56-77.

[7] Yershova, A., Jaillet, L., Siméon, T., & LaValle, S. M. (2005). Dynamic-
domain RRTs: Efficient exploration by controlling the sampling domain.
In Proceedings of the 2005 IEEE International Conference on Robotics
and Automation (pp. 3856-3861). IEEE.

[8] Vonásek, V., Saska, M., Winkler, L., & Přeučil, L. (2013). High-
level motion planning for CPG-driven modular robots. Robotics and
Autonomous Systems, 61(11), 1244-1257.

[9] Alterovitz, R., Patil, S., & Derbakova, A. (2011). Rapidly-exploring
roadmaps: Weighing exploration vs. refinement in optimal motion
planning. In 2011 IEEE International Conference on Robotics and
Automation (pp. 3706-3712). IEEE.

Experiment 4: Step Limit 75

Fig. 28: 2D Space Fig. 29: 3D Space Fig. 30: 4D Space

Fig. 31: 5D Space Fig. 32: 6D Space Fig. 33: 7D Space

Fig. 34: 8D Space Fig. 35: 9D Space Fig. 36: 10D Space

Results for step limit 75 across 2D to 10D spaces. The step
range remains consistent with Experiments 2 and 3. This
further confirms the diminishing returns on the increasing step
limit. The marginal efficiency gain (∆E) from increasing the
limit from 50 to 75 appears minimal, suggesting an approach
to an optimal step limit

[10] Abbasi-Yadkori, Y., Modayil, J., & Szepesvári, C. (2017). Extending
rapidly-exploring random trees for asymptotically optimal anytime mo-
tion planning. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 2675-2682). IEEE.

[11] Urmson, C., & Simmons, R. (2003). Approaches for heuristically biasing
RRT growth. In Proceedings 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (Vol. 2, pp. 1178-1183). IEEE.

[12] Jaillet, L., Yershova, A., La Valle, S. M., & Siméon, T. (2005). Adaptive
tuning of the sampling domain for dynamic-domain RRTs. In 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems
(pp. 2851-2856). IEEE.

[13] Akgun, B., & Stilman, M. (2011). Sampling heuristics for optimal
motion planning in high dimensions. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 2640-2645). IEEE.

[14] Kuffner Jr, J. J., & LaValle, S. M. (2000). RRT-connect: An efficient
approach to single-query path planning. In Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Vol. 2, pp. 995-1001). IEEE.

[15] Perez, A., Platt, R., Konidaris, G., Kaelbling, L., & Lozano-Perez,
T. (2012). LQR-RRT*: Optimal sampling-based motion planning with
automatically derived extension heuristics. In 2012 IEEE International
Conference on Robotics and Automation (pp. 2537-2542). IEEE.

[16] Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018).
Neural ordinary differential equations. In Advances in Neural Informa-
tion Processing Systems (pp. 6571-6583).

[17] Genz, A., & Bretz, F. (2009). Computation of Multivariate Normal and
t Probabilities. Springer Science & Business Media.

[18] Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods.
Acta Numerica, 7, 1-49.

[19] Friesecke, G., & Koppen, J. (2009). On the Born-Oppenheimer approx-
imation of wave functions in molecular quantum mechanics. Journal of
Mathematical Chemistry, 46(1), 1-27.

Experiment 5: Step Limit 100

Fig. 37: 2D Space Fig. 38: 3D Space Fig. 39: 4D Space

Fig. 40: 5D Space Fig. 41: 6D Space Fig. 42: 7D Space

Fig. 43: 8D Space Fig. 44: 9D Space Fig. 45: 10D Space

Results for step limit 100 across 2D to 10D spaces. The step
range remains 450 to 800. Comparing across Experiments 1-
5, we can model the relationship between step limit (L) and
average step count (S) as S ≈ 20000

L + 400 for 1 ≤ L ≤ 100.
This model suggests a hyperbolic decrease in step count with
an increasing step limit, with a lower bound of around 400
steps

	Introduction
	Background and Related Work
	Infinite Multi-Dimensional Data Processing
	Step Calculation for Path-Finning and Node Calculation

	Methodology
	Model-Integrated Dimensional Framework
	Step Function Design

	Implementation
	Node Class
	Bellande Step Function

	Formulation and Proof
	Distance Calculation
	Bellande Step Calculation
	Calculus Formulation
	Proof of Bellande Step Concept
	Bellande Model Function

	Enhanced Proof of Bellande Model Function
	Step 1: Input Layers Creation
	Step 2: Concatenation
	Proof of Concept

	Training the Bellande Model
	Results and Discussion
	Experimental Setup
	Experiment Function Analysis
	Mathematical Analysis
	Distance Calculation
	Bellande Step Function
	Expected Number of Steps
	Probability Distribution

	Proof of Convergence
	Multidimensional Calculus Interpretation
	Stochastic Process View

	Experiment Sumarry
	Performance Evaluation

	Applications
	Conclusion
	References
	References

